Aghbashlo, M., Kianmerh, M. H., & Arabhosseini, A. (2008). Energy and exergy analysis of thin-layer drying of potato slices in a semi-industrial continous band dryer. Drying Technology, 26, 1501–1508. https://doi.org/10.1080/07373930802412231
Akkoyunlu, M. C., Pekel, E., Akkoyunlu, M. T., & Pusat, S. (2020). Using hybridized ANN-GA prediction method for DOE performed drying experiments. Drying Technology, 38(11), 1393–1399. https://doi.org/10.1080 /07373937.2020.1750027
Akpinar, E. (2004). Energy and exergy analyses of drying of red pepper slices in convective type dryer. International Communications in Heat and Mass Transfer, 31(8), 1165–1176.http://doi.org/10.1016/j.icheatmasstransfer.2004.08.014
Akpinar, E. K. (2005). Energy and exergy aanalyses of drying of eggplant slices in a cyclone type dryer. Journal of Mechanical Science and Technology, 19(2), 692–703. https://doi.org/10.1007/BF02916191
Amanifard, N., Nariman-Zadeh, N., Borji, M., Khalkhali, A., & Habibdoust, A. (2008). Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Conversion and Management, 49(2), 311–325. https://doi.org/10.1016/ j.enconman. 2007.06.002
Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA‐ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation, 45(3). https://doi.org /10.1111/jfpp.15258
Azadbakht, M., Aghili, H., Ziaratban, A., & Torshizi, M. V. (2017). Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy, 120, 947–958. https://doi.org/10.1016/j.energy.2016.12.006
Azadbakht, M., & Vahedi Torshizi, M. (2020). The antioxidant activity components change of pears subject to static and dynamic loads the antioxidant activity components change of pears subject to static and dynamic loads. International Journal of Fruit Science, 20, 1255–1275. https://doi.org/10.1080 /15538362. 2020. 1718053
Azadbakht, M., Vahedi Torshizi, M., Noshad, F., & Rokhbin, A. (2018). Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices. Energy, 165, 836–845. https://doi.org/10.1016/j.energy.2018.10.017
Corzo, O., Bracho, N., Vásquez, A., & Pereira, A. (2008). Energy and exergy analyses of thin layer drying of coroba slices. Journal of Food Engineering, 86(2), 151–161. https://doi.org/10.1016/j.jfoodeng.2007.05.008
Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2011). Application of fractal theory for prediction of shrinkage of dried kiwifruit using artificial neural network and genetic algorithm. Drying Technology, 29(8), 918–925. https://doi.org/10.1080/ 07373937. 2011.553755
Kalathingal, M. S. H., Basak, S., & Mitra, J. (2020). Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. Journal of Food Process Engineering, 43(1). https://doi.org/10.1111/jfpe.13128
Karagüzel, İ., Tekİn, E., & Topuz, A. (2012). Energy and exergy analysis of fluidized bed drying of chickpea and bean. Scientific Research and Essays, 7(46), 3961–3973. https://doi.org/10.5897/SRE11.2003
Maleki, B., Ghazvini, M., Ahmadi, M. H., Maddah, H., & Shamshirband, S. (2019). Moisture estimation in cabinet dryers with thin-layer relationships using a genetic algorithm and neural network. Mathematics, 7(11), 1042. https://doi.org/ 10.3390/math7111042
Midilli, A., & Kucuk, H. (2003). Energy and exergy analyses of solar drying process of pistachio. Energy, 28(6), 539–556. https://doi.org/10.1016/S0360-5442(02)00158-5
Nazghelichi, T., Kianmehr, M. H., & Aghbashlo, M. (2010). Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy, 35(12), 4679–4684. https://doi.org/ 10.1016/j.energy.2010.09.036
Nikbakht, A. M., Motevali, A., & Minaei, S. (2014). Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Journal of the Saudi Society of Agricultural Sciences, 13(2), 81–91. https://doi.org/ 10.1016/j.jssas.2013.01.005
Pusat, S., & Akkaya, A. V. (2022). Explicit equation derivation for predicting coal moisture content in convective drying process by GMDH-type neural network. International Journal of Coal Preparation and Utilization, 42(6), 1852–1865. https://doi.org/10.1080 /19392699.2020.1774563
Syahrul, S., Dincer, I., & Hamdullahpur, F. (2003). Thermodynamic modeling of fluidized bed drying of moist particles. International Journal of Thermal Sciences, 42(7), 691–701. https://doi.org/ 10.1016/S1290-0729(03)00035-8
Topic, R. (1995). Mathematical model for exergy analysis of drying plants. Drying Technology, 13(2), 437–445. https://doi.org/10.1080/07373939508916963
Vahedi Torshizi, M., Azadbakht, M., & Kashaninejad, M. (2020). A study on the energy and exergy of Ohmic heating (OH) process of sour orange juice using an artificial neural network (ANN) and response surface methodology (RSM). Food Science & Nutrition, 8(8), 4432–4445. https://doi.org/ 10.1002/fsn3.1741
Vahedi Torshizi, M., & Kashaninejad, M. (2022). Investigation of Changes in the Qualitative Properties of Sour Orange Juice during the Ohmic Heating Process. Food Engineering Research, 21(2), 1–14. https://doi.org/10.22092/fooder.2022.353850.1297
Ziaratban, A., Azadbakht, M., & Ghasemnezhad, A. (2017). Modeling of volume and surface area of apple from their geometric characteristics and artificial neural network. International Journal of Food Properties, 20(4), 762–768. https://doi.org/10.1080/ 10942912.2016.1180533