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ABSTRACT 
  
This low-temperature combustion study modified a single-cylinder gasoline engine into an HCCI engine. 
For the HCCI experiments, four different compression ratios were used. The intake air temperatures 
varied between 313 and 373 K, while the engine speed changed from 800 to 1800 rpm. Three fuel blends 
were used. The RON60 indicates 60% iso-octane and 40% n-heptane. A modified social group optimization 
algorithm was used for HCCI optimization purposes. Regression modeling was first employed to calculate 
the mathematical relations between the factors (i.e., compression ratio, research octane number, intake 
air temperature, engine speed, and lambda) and the responses (effective torque, IMEP, indicated thermal 
efficiency, specific fuel consumption, COV IMEP, and HC). For the HCCI performance tests, the regression 
models fit the given observations well with a low prediction error. The calculated R2 obtained from this 
study shows that the compression ratio (X1), RON (X2), intake air temperature (X3), engine speed (X4), and 
lambda (X5) are sufficient to model the responses (effective torque, IMEP, indicated thermal efficiency, 
specific fuel consumption, COV IMEP, and HC). Then, the MSGO is run via these mathematical models to 
determine the parameters with optimal optimization values. In the verification phase, 13 additional 
experimental runs that were not used in the mathematical modeling phase were used. It was found that 
the regression models fit the observed values well with a low PE (%). The algorithm suggested the best 
value for studied parameters as X1 = 11.47, X2 = 60, X3 = 313 K, X4 = 800 rpm, and X5 = 1.45. The verification 
shows satisfying results with a high accuracy. The optimized factor levels indicate that the effective torque, 
IMEP, and indicated thermal efficiency were maximized while the other responses were minimized. 
Therefore, the findings signify the potential of the algorithm for HCCI optimization.  
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1. Introduction 
 
The increasingly stringent emissions regulation has enforced 

the development of engine technology. The goal is to push current 
vehicles to produce ultra-low emissions with acceptable 
performance. Recent developments in conventional internal 
combustion engines (ICE) have made it possible to improve their 
emissions and fuel consumption. Using a three-way catalytic 
converter can significantly reduce the CO, HC, and NOx emissions 
of gasoline engines. However, the operation of lean air-fuel ratio 
(AFR) is impossible at part load as the conversion efficiencies can 
only be maintained close to stoichiometry. As a result, a significant 
increase in fuel consumption of a gasoline engine cannot be 
avoided. On the other hand, the lean AFR can be achieved using 
stratified charge gasoline direct injection (GDI). Both technologies 
enable the fuel flow rate to be changed regardless of the airflow, 
thus varying the load independently of the airflow. However, using 
a lean mixture prevents the effectiveness of NOx after treatments.  

Homogeneous charge compression ignition (HCCI) technology 
emerges as a promising concept (Kocakulak et al., 2023). HCCI 
engines can satisfy stringent emissions regulations with 

acceptable engine performance without the use of expensive, 
complex, and inefficient after-treatment systems (Abdelmalek et 
al., 2021; Kocakulak et al., 2022). Its combustion differs from that 
of the conventional combustion of spark ignition (SI) or 
compression ignition (CI). Unlike the flame propagation of SI 
engine or diffusion combustion of CI engine, the combustion in 
HCCI engine occurs by a combination of a diluted and premixed 
fuel and air mixture (Parsa and Neshat, 2022). Such a 
homogeneous mixture ignites simultaneously at multiple 
locations inside the combustion chamber. Therefore, the hot flame 
zone or high combustion temperature region that will produce 
NOx emissions can be avoided. Moreover, the premixed mixture 
helps prevent the rich fuel mixture, thus reducing soot emissions 
substantially. Due to the simultaneous reduction of both NOx and 
soot, HCCI combustion emerges as a promising technology 
compared to conventional SI and CI engine that suffers from the 
trade-off of NOx-soot emissions. The lean mixture also allows the 
HCCI to be run unthrottled, thus increasing the engine efficiency 
and improving the fuel economy compared to the SI engine. Note 
that the HCCI engine is not yet available in the market. Thus, a 
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modification is normally performed using traditional gasoline or 
diesel engines for research purposes. 

Artificial intelligence-based methods such as artificial neural 
networks (ANN) and adaptive network-based fuzzy inference 
systems (ANFIS) have attracted recent attention (Deh Kiani et al., 
2010; Leo et al., 2020). Optimization techniques, in particular, 
have an important effect on solving several engineering issues. 
Deterministic techniques are computationally expensive and 
difficult to reach a useful solution for real-life problems, which are 
often indicated by their complex nonlinearity and multimodal 
characteristics (AlShabi et al., 2021). Meta-heuristic algorithms 
are therefore considered more efficient for solving practical 
problems since they are stochastic and derivative-free (Rao and 
Keesari, 2020; Roushangar and Shahnazi, 2019; Tejani et al., 
2018).  

Inspired by nature to overcome complicated real-world 
problems, meta-heuristic algorithms have attracted a lot of 
attention. They depend on simulating nature and are commonly 
used to solve optimization problems (especially global 
optimization) (Yazdani and Jolai, 2015). There are several types of 
meta-heuristic algorithms including particle swarm optimization 
(PSO), genetic algorithm (GA), social group optimization (SGO), 
modified social group optimization (MSGO), ant colony 
optimization (ACO), and harmony search (HS) which are 
frequently used for modeling of different engineering issues 
(Bhadoria and Marwaha, 2020). A systematic review containing 
the meta-heuristic techniques has been published and critically 
discussed by Naik et al. (2020). 

There are two significant aspects that are in contrast to each 
other in the heuristic optimization methods: (i) exploration and 
(ii) exploitation. Exploration means seeking the entire space and 
having different answers for each iteration (global search), while 
exploitation refers to the quality of the solution for every iteration 
(local search). Too much reliance on exploitation may lead to 
being stuck in local optimum points, yet too much concentrating 
on exploration may result in the low worth of the last best solution 
(Eiben and Schippers, 1998). Therefore, an algorithm must be 
capable of balancing these two factors. 

Among the human-based algorithms illustrated, the SGO 
invented by Satapathy and Naik (2016) has attracted more 
attention recently. SGO is inspired by the social manner of an 
individual in a group to solve complicated problems. SGO has been 
applied effectively for solving optimization problems. Progress of 
the SGO algorithm is composed of two phases: (i) improving and 
(ii) acquiring. During the improvement phase, each individual 
expands his or her knowledge by interacting with the best person 
in the group (best solution). To acquire knowledge, individuals 
interact with randomly selected individuals and the best person at 
the same time during the acquiring phase. SGO has been improved 
and is now known as modified SGO (MSGO). The MSGO improves 
the acquiring phase of SGO and introduces a self-awareness 
probability factor. In this way, an individual's learning capability 
from the best-learned person in the societal setup is enhanced 
(Naik et al., 2020; Satapathy and Naik, 2016). 

Although the SGO algorithm gave an improvement in the 
exploration and exploration search ability compared to other 
several algorithms, however, this technique currently is not 
capable of finding the optimal point for some functions of fixed-
dimensional multimodal (Mirjalili and Lewis, 2016). Therefore, it 
is necessary to balance the exploration and exploration search 
ability using the MSGO. Its performance has been investigated by 
mimicking benchmark functions employed by previous 
studies (Heidari et al., 2019; Mirjalili, 2016; Mirjalili et al., 2014; 
Moghdani and Salimifard, 2018; Nematollahi et al., 2017; 
Nematollahi et al., 2020; Shareef et al., 2015; Zhao et al., 2019).  

Although several studies have indicated promising findings 
applying the MSGO algorithm, there is no available work 
evaluating the usefulness of the MSGO for internal combustion 
engines (ICE) application, particularly for low-temperature 
combustion HCCI engines. Therefore, this investigation is devoted 

to studying the MSGO method as a novel technique to optimize LTC 
combustion. Despite the promise of electric vehicles, ICEs are still 
being actively researched owing to their application for other 
purposes, such as marine engines. HCCI engine, for instance, has 
the potential to be the next ICE technology as it can be run using 
different types of fuels and can be utilized to extend the range of 
electric vehicles. 

In the present study, the multi-objective optimization based on 
the MSGO algorithm was utilized to determine the optimal values of 
engine parameters (i.e., compression ratio, research octane number 
(RON), intake air temperature, engine speed, and lambda) and the 
engine-out factors (i.e., effective torque, IMEP, indicated thermal 
efficiency, specific fuel consumption, COV IMEP, and HC. The 
coefficient of variation in indicated mean effective pressure (COV 
IMEP) was used to assess combustion stability as it represents the 
cyclic variability. 
  
2. Materials and Methods 
2.1. Experimental setup and test fuels 

In this study, the single-cylinder gasoline engine was modified 
into an HCCI engine. The schematic diagram of the engine setup 
with its detailed characteristics is given in Table 1. In the 
experiments, four different compression ratios were used (CR9, 
CR10, CR11, and CR12). The intake air temperatures varied 
between 313 and 373 K, while the engine speed changed from 800 
to 1800 rpm. Three fuel blends, i.e., RON20, RON40, and RON60, 
were used. The RON60 indicates 60% iso-octane and 40% n-
heptane. The physicochemical properties of iso-octane and n-
heptane fuels are presented in Table 2. The detailed experimental 
setup has been previously explained (Calam et al., 2019). 
 

2.2. Optimization using the MSGO 
In SGO and MSGO, each individual (person) of the group shows 

a potential solution, and the number of design variables in the 
problem is represented by the human traits, which represent a 
person's dimension. The pseudocode for the improving phase is 
given in Eqs. (1) and (2). In this equation, Pi is the persons of the 
social group that is composed of N persons where i = {1, 2, 3, …, N}. 
In addition, each person also has D traits (Pi= Pi1, Pi2, …, PiD). By 
doing so, gbest will be able to help others in the group improve 
their knowledge. The aim is formulated as a minimization problem 
in Eq. (1) (Naik, 2021; Naik et al., 2020; Satapathy and Naik, 2016) 

 
Table 1. The specification of the engine. 

Test Engine Ricardo Hydra 
Cylinder number 1 
Bore x stroke (mm) 80.26 x 88.90 
Compression ratio  5:1 - 13:1 
Maximum power output (kW) 15 
Maximum engine speed (rpm)  5400 
Fuel injection system  Port injection 
Valve lift (mm) Intake 5.5, exhaust 3.5 

 
Table 2. Physicochemical properties of n-heptane/iso-octane. 

Properties iso-octane n-heptane 
RON 0 100 
Chemical formula C7H16 C8H18 
Molar mass (g/mol)  100.21 114.23 
Density (kg/cm3 at 20 oC) 0.68 0.69 
Boiling point (oC) 97-98 99 
Lover heat value (kJ/kg) 44566 44310 

 

[min , ] min{ ( ), 1,2,..., }ivalue index f P i N= =                                  (1) 

( ,:)gbest P index=                                                                              (2) 

 
where 𝑃𝑖 values are the updated values at the end of the enhancing 
stage. In this paper, some of the codes used from the following 
references and the assumption in this code were considered as 
rand1~U(0,1) and rand2~U(0,1) are used to affect the algorithm's 
stochastic nature (Naik et al., 2020; Satapathy and Naik, 2016). 
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The MSGO algorithm was developed by modifying the 
acquiring phase of the SGO algorithm. The improving phase is the 
same as in SGO. In this phase, each social group member continues 
to interact with the best person (bestp). Also, each person interacts 
with the other group members to acquire knowledge. If the other 
person has more knowledge, the person acquires new knowledge 
during this phase.  

Also, the SAP was selected as a capacity to acquire knowledge 
from another person. The acquiring phase of MSGO was calculated 
as a minimization problem which is depicted in Eq. (3) (Naik, 
2021; Naik et al., 2020; Satapathy and Naik, 2016). 

[ , ] min{ ( ), 1,2,..., }ivalue index num f P i N− = =  
and 

( ,:)Pgbest P index num= −                                                                      (3) 

In the modified code used in this paper, it is proposed to select 
the SAP between 0.6 and 0.9. According to the literature, MSGO 
shows the best performance for SAP=0.7 and c=0.2 (Naik, 2021; 
Naik et al., 2020; Satapathy and Naik, 2016). 

 
3. Results and Discussion 

 
This investigation was performed in three steps, including 

performing the experimental runs, fitting mathematical models, 
and finally, the optimization by using the MSGO method. Table 3 
presents the minimum and maximum levels of the factors utilized 
in the experiments. 

An experimental design with 48 test runs was conducted for 
the different combinations of these factors. Table 4 represents the 
coded and uncoded factor levels together. In the mathematical 
modeling phase (second stage), regression models of the 
responses (Y1: effective torque (Nm), Y2: IMEP (Bar), Y3: indicated 
thermal efficiency, Y4: specific fuel consumption (g/kWh), Y5: COV 
IMEP (%), and Y6: HC (ppm)) were generated for both 
coded/uncoded factors. Using coded factor levels is based on the 
requirement to use mathematical models for the coded factor 
levels in the optimization stage. However, in order to show the 
true mathematical relationship to readers, the original models 
(the models with uncoded factor levels) were also computed. 
Accordingly, in Table 4, coded factor levels are presented 
alongside uncoded factor levels. The coding is carried out using Eq. 
(4). 
 

uncoded max min
coded

max min

(X -((X +X  )/2))
X =

((X -X  )/2)
                                                         (4)  

 
Table 3. Minimum and maximum levels of the factors utilized in the 
experiments 

Factors Symbols Unit 
Levels 

min max 
Compression ratio X1 - 9 12 
RON X2 - 20 60 
Intake air temperature X3 K 313 373 
Engine speed X4 rpm 800 1800 
Lambda X5 - 1.09 2.96 

 
Table 4. The experimental results 

Run 
(i) 

Factors (Uncoded) 
𝑋𝑖4 𝑋𝑖5 

Factors (Coded) 
𝑋𝑖4 𝑋𝑖5 

Responses 

𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑌𝑖1  𝑌𝑖2  𝑌𝑖3 𝑌𝑖4 𝑌𝑖5 𝑌𝑖6 
1 9 20 353 1800 1.71 -1.00 -1.00 0.33 1.00 -0.34 6.78 4.6021 0.2426 322.7165 4.2591 392 
2 9 20 373 800 1.6 -1.00 -1.00 1.00 -1.00 -0.45 9.45 4.7936 0.2921 283.5195 3.2179 687.8 
3 9 20 373 1200 1.68 -1.00 -1.00 1.00 -0.20 -0.37 8.42 4.6372 0.2745 288.2594 3.7815 585.8 
4 9 20 373 1200 1.99 -1.00 -1.00 1.00 -0.20 -0.04 7.86 4.3537 0.2926 282.0633 3.2681 567.6 
5 9 40 373 800 1.63 -1.00 0.00 1.00 -1.00 -0.42 8.80 5.0232 0.2731 275.1285 2.7790 543 
6 9 40 373 1200 1.5 -1.00 0.00 1.00 -0.20 -0.56 8.34 5.6865 0.2609 284.6162 4.1903 397 
7 10 20 313 1600 1.97 -0.33 -1.00 -1.00 0.60 -0.06 5.30 5.1018 0.2872 271.9470 3.4947 405 
8 10 40 313 800 1.09 -0.33 0.00 -1.00 -1.00 -1.00 12.45 9.0492 0.3186 255.7469 3.2958 488 
9 10 40 313 800 1.38 -0.33 0.00 -1.00 -1.00 -0.69 10.92 7.2743 0.3361 251.9483 2.2293 461 

10 10 40 333 1200 1.81 -0.33 0.00 -0.33 -0.20 -0.23 8.75 5.8968 0.3042 269.0526 2.7163 360.8 
11 10 40 353 1000 2.31 -0.33 0.00 0.33 -0.60 0.30 6.92 4.8480 0.3139 266.0762 2.3521 389 
12 10 40 353 1200 1.92 -0.33 0.00 0.33 -0.20 -0.11 8.05 5.4741 0.3027 273.9515 2.6530 366.2 
13 10 40 353 1600 1.68 -0.33 0.00 0.33 0.60 -0.37 7.17 6.0306 0.2544 305.7614 3.2636 263.6 
14 10 60 353 800 1.6 -0.33 1.00 0.33 -1.00 -0.45 8.69 6.8475 0.2933 271.9648 2.8531 296.8 
15 10 60 353 1000 1.65 -0.33 1.00 0.33 -0.60 -0.40 7.69 6.3437 0.2806 282.9162 2.9758 242.8 
16 11 40 353 800 2.56 0.33 0.00 0.33 -1.00 0.57 7.66 4.3431 0.3050 266.4178 2.2151 373 
17 11 60 373 800 1.58 0.33 1.00 1.00 -1.00 -0.48 10.72 5.6842 0.3041 269.8903 3.1181 400 
18 11 60 373 800 1.68 0.33 1.00 1.00 -1.00 -0.37 10.23 5.5270 0.3110 264.1549 2.8594 392 
19 12 20 313 800 2.89 1.00 -1.00 -1.00 -1.00 0.93 6.55 4.4590 0.2974 253.7486 3.1165 429.4 
20 12 20 313 1000 1.65 1.00 -1.00 -1.00 -0.60 -0.40 10.10 5.0902 0.3468 249.1402 4.4875 372.4 
21 12 20 313 1000 1.76 1.00 -1.00 -1.00 -0.60 -0.28 8.84 5.0346 0.3534 245.4160 4.3285 342 
22 12 20 313 1200 1.71 1.00 -1.00 -1.00 -0.20 -0.34 9.33 5.1852 0.3206 259.4196 4.4580 378.6 
23 12 20 313 1200 1.9 1.00 -1.00 -1.00 -0.20 -0.13 7.45 4.9164 0.3370 255.5125 4.2378 381.4 
24 12 20 313 1200 2.18 1.00 -1.00 -1.00 -0.20 0.17 6.85 4.8853 0.3111 260.2514 4.0944 393.6 
25 12 20 313 1400 1.82 1.00 -1.00 -1.00 0.20 -0.22 7.20 5.1706 0.3182 264.5130 4.5103 373.6 
26 12 20 313 1400 2.18 1.00 -1.00 -1.00 0.20 0.17 7.05 4.7074 0.3004 269.9124 4.3153 376.6 
27 12 20 313 1600 1.94 1.00 -1.00 -1.00 0.60 -0.09 6.65 5.0727 0.2967 275.5102 4.4862 365 
28 12 20 373 800 2.96 1.00 -1.00 1.00 -1.00 1.00 6.65 3.5905 0.2522 279.6359 3.8023 343 
29 12 40 313 800 1.67 1.00 0.00 -1.00 -1.00 -0.38 15.45 6.5019 0.3688 227.8163 3.0670 518.4 
30 12 40 313 1000 1.71 1.00 0.00 -1.00 -0.60 -0.34 14.59 6.2734 0.3418 236.6185 3.1385 496 
31 12 40 313 1200 1.77 1.00 0.00 -1.00 -0.20 -0.27 15.26 5.9747 0.3468 242.6032 3.5470 446.6 
32 12 40 333 800 1.69 1.00 0.00 -0.33 -1.00 -0.36 15.80 5.2893 0.3457 236.8163 3.1481 421.6 
33 12 40 333 1000 1.76 1.00 0.00 -0.33 -0.60 -0.28 15.70 5.2188 0.3507 237.6496 3.3059 408.2 
34 12 40 353 800 1.71 1.00 0.00 0.33 -1.00 -0.34 15.34 4.9084 0.3403 241.8164 3.3942 359.8 
35 12 40 353 1200 2.43 1.00 0.00 0.33 -0.20 0.43 9.57 4.2494 0.3141 255.4630 3.2350 372 
36 12 40 373 800 1.74 1.00 0.00 1.00 -1.00 -0.30 12.58 4.4634 0.3279 247.1163 3.8470 395 
37 12 40 373 1200 1.94 1.00 0.00 1.00 -0.20 -0.09 10.72 4.4578 0.3303 240.7826 4.1356 346.4 

 
 
Table 4. Continued. 
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Run 
(i) 

Factors (Uncoded) 
𝑋𝑖4 𝑋𝑖5 

Factors (Coded) 
𝑋𝑖4 𝑋𝑖5 

Responses 

𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑌𝑖1  𝑌𝑖2  𝑌𝑖3 𝑌𝑖4 𝑌𝑖5 𝑌𝑖6 
38 12 40 373 1600 2.15 1.00 0.00 1.00 0.60 0.13 7.10 4.4023 0.3028 253.7183 4.2359 357 
39 12 60 313 800 1.83 1.00 1.00 -1.00 -1.00 -0.21 17.21 5.9768 0.3865 227.0327 2.1649 435.2 
40 12 60 313 1400 2.04 1.00 1.00 -1.00 0.20 0.02 12.10 6.3340 0.3348 243.1633 3.2148 515 
41 12 60 333 800 1.68 1.00 1.00 -0.33 -1.00 -0.37 16.40 5.8475 0.3572 234.7569 2.6568 464.8 
42 12 60 333 1000 1.74 1.00 1.00 -0.33 -0.60 -0.30 16.22 6.1291 0.3604 235.1529 2.9624 456.4 
43 12 60 333 1200 1.78 1.00 1.00 -0.33 -0.20 -0.26 15.50 6.0227 0.3474 239.7327 3.0626 457.6 
44 12 60 353 800 1.69 1.00 1.00 0.33 -1.00 -0.36 15.71 5.6397 0.3501 236.7833 2.8259 444.4 
45 12 60 353 1000 1.81 1.00 1.00 0.33 -0.60 -0.23 15.70 5.6300 0.3576 238.9417 3.1271 411.8 
46 12 60 353 1200 1.82 1.00 1.00 0.33 -0.20 -0.22 13.78 5.6666 0.3422 248.7163 3.1848 411 
47 12 60 353 1400 1.95 1.00 1.00 0.33 0.20 -0.08 11.25 5.9379 0.3319 258.6363 3.4480 432.4 
48 12 60 353 1400 2.08 1.00 1.00 0.33 0.20 0.06 10.80 5.4442 0.3065 265.7493 3.3653 449.2 

 
In the second stage, regression modeling was performed to 

determine the relation between factors and their corresponding 
responses which are shown in Table 4. The depiction of the full 
quadratic regression model is presented by Eq. (5) 
 

2
0

1 1 i<j

k k k

i i ii i i i j
i i

Y X X jX X    
= =

= + + + +                               (5) 

where, the response is represented by Y, β terms are the model 
coefficients, X terms (Xi: linear terms, Xi2: quadratic terms, and XiX: 
the interaction of defined parameters) are the factors, and ε is 
residual terms (Atmanlı et al., 2015; Ileri et al., 2013; Montgomery, 
2017; Yilmaz et al., 2016). Computations for the regression 
modeling and statistical tests for the significance of the models 
were performed using the Minitab statistical analysis program. 
The suggested equation for Y is given in Eqs. (6) to (11). In these 
equations, 𝑌̂ represents the estimated regression equations from 
the observations. The surface plots for the responses are 
presented in Eqs. (6) to (11) are given in Figures 1 to 6, 
respectively. 
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4 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5

ˆ 2389.3600 246.9574 1.8389 8.9268 0.1334

289.8011 8.3618 0.0174 0.0085 0.00004

0.5406 0.1426 0.2709 0.0070 17.0157

0.0033 0.0003 0.1546 0.0003

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X

= − + − + +

− + − +

− − − +

−

−

+

+

+

+ 3 4 3 5

4 5

0.2896

0.0085

X X X

X X

−+

  (9) 

5 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5 3 4

ˆ 44.1671 4.8900 0.1200 0.1333 0.0081

3.010 0.2874 0.0009 0.0002 0.000001

1.6268 0.0214 0.0025 0.0004 0.3060

0.0001 0.000001 0.0368 0.000006

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X X

= + − + − + −

+ + + − +

− + − − −

− + −

3 5 4 50.01009 0.0011X X X X

−

+

   (10) 

6 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5

ˆ 4838.9034 51.9220 63.6828 10.9177 0.8195

492.9323 9.0656 0.0879 0.0307 0.00006

44.4104 5.0651 1.1798 0.0610 0.7879

0.0479 0.0031 3.0373 0.0013

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X

= + − − − − −

+ − + + +

+ − + − +

+ − − 3 4 3 5

4 5

0.8753

0.1346

X X X X

X X

+

+

(11) 

 
The MATLAB programming environment was used for 

implementing the MSGO. To use these equations in MATLAB for 
MSGO optimization, models for coded factor levels ranging from -
1 to 1 were created. Thus, the models became unit-independent, 
and multi-objective optimization became straightforward (Ileri et 
al., 2020; Karaoglan, 2021; Karaoglan and Baydeniz, 2021; Naik et 
al., 2020). The suggested models based on the coded parameters 
are presented in Eqs. (12) to (17).  

 

1 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5 3 4

ˆ 8.0519 2.6435 0.5201 0.6861 2.2610

5.2311 1.2601 1.9734 0.9384 0.6777

0.1350 2.8243 0.6036 0.2707 0.1757

0.4804 0.3294 2.6500 0.4096 0.531

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X X

= + + − − − −

+ − − − −

+ − − − −

− − − + 3 5

4 5

4

0.9971

X X

X X

−

 (12) 

2 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5 3 4

ˆ 5.5156 0.0699 0.5846 0.4551 0.3906

1.1433 0.4632 0.0752 0.0188 0.0626

1.4818 0.0879 0.1674 0.1435 0.1353

0.0386 0.2256 0.5756 0.0893 0.188

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X X

= + − + − + −

− − − − +

+ − + − −

+ − + + 3 5

4 5

9

0.5177

X X

X X

+

(13) 

3 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5 3 4

ˆ 0.2980 0.0147 0.0029 0.0158 0.0412

0.0020 0.0101 0.0016 0.0050 0.0139

0.0261 0.0143 0.0117 0.0099 0.0284

0.0011 0.0060 0.0085 0.0139 0.002

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X X

= + + − − − −

+ − + − −

+ + + − −

− + + − 3 5

4 5

9

0.0103

X X

X X

−

 (14) 

4 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2 5

ˆ 274.8283 2.9079 2.8972 13.8230 22.2601

13.5718 18.8142 6.9547 7.7374 10.3432

0.4726 4.2793 12.1918 5.2610 23.8646

1.9744 2.7634 2.8903 5.0982

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X X

= + − − + + −

− + − + +

− − − + +

+ + − 3 4 3 5

4 5

8.1250

3.9938

X X X

X X

+ −

(15) 

5 1 2 3 4

2 2 2 2 2
5 1 2 3 4 5

1 2 1 3 1 4 1 5 2 3

2 4 2 5 3 4

ˆ 2.7840 0.0293 0.0007 0.2543 0.8034

0.1117 0.6468 0.3669 0.1959 0.2484 1.4222

0.6417 0.1120 0.2916 0.4293 0.0736

0.0105 0.6883 0.0966 0.283

Y X X X X

X X X X X X

X X X X X X X X X X

X X X X X X

= + + − + + −

+ + + − + −

+ − − − −

+ − − 3 5 4 52 0.5421X X X X+

 (16)  

6 1 2 3 4

2 2 2 2
5 1 2 3 4

2
5 1 2 1 3 1 4 1 5

2 3 2 4 2

ˆ 338.0262 21.1987 64.4885 7.9878 36.4228

30.3046 20.3976 35.1558 27.6710 16.1399

38.8247 151.9544 53.0932 45.7818 1.1051

28.7274 31.0271 56.7977

Y X X X X

X X X X X

X X X X X X X X X

X X X X X X

= + + − − − +

+ − + + +

+ − + − +

+ − 5 3 4 3 5

4 5

20.0685 24.5529

62.9365

X X X X

X X

− + +

(17)
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Figure 1. Response surface of Effective Torque (Nm) 
 

 
Figure 2. Response surface of IMEP (Bar) 

 

 
Figure 3. Response surface of Indicated Thermal Efficiency 
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Figure 4. Response surface of Specific Fuel Consumption (g/kWh) 

 

 
Figure 5. Response surface of COV IMEP (%) 

 

 
Figure 6. Response surface of HC (ppm) 

 
The R2 values as an indicator for determining the accuracy of the model are shown in Table 5. The values given in Table 5 indicated 

that the compression ratio (X1), RON (X2), intake air temperature (X3), engine speed (X4), and lambda (X5) are sufficient to model the 
responses (effective torque, IMEP, indicated thermal efficiency, specific fuel consumption, COV IMEP, and HC), which means that there is 
no need to add additional factors to the mathematical models. Then, the mathematical models' significances are tested with the aid of 
analysis of variance (ANOVA) (Table 6). Table 6 indicates that the models presented in Eqs. (6) to (11), also the same as in Eqs. (12) to 
(17), are significant. Table 7 shows the prediction performance of the models. Observed responses (measured experimental results from 
the experimental set-up) are represented by Yi in this table, whereas Minitab results (predicted values by the aid of fitted mathematical 
models) are the 𝑌̂𝑖  values. 𝑌̂𝑖  values are rounded to two decimals for a simpler view. PEi denotes the prediction error of the ith run as 
calculated using Eq. (18). 

ˆ ˆ(%) 100(| |/ )i i i iPE Y Y Y= −                                                                      (18) 



Safieddin Ardebili et al. 

                                                                                                                                                

17 
 

 
 
Table 5. The R2 values for the studied responses.  

 R2 
Responses 

𝑌̂1 𝑌̂2 𝑌̂3 𝑌̂4 𝑌̂5 𝑌̂6 
R2 (%) 98.41 96.68 96.74 96.84 97.26 95.97 
R2 (prediction)(%) 91.30 84.45 91.02 81.57 76.37 76.10 
R2 (adjusted) (%) 97.24 94.22 94.32 94.50 95.23 92.99 

 
 
Table 6. The ANOVA results 

Studied parameters P-value significant 
Effective torque (Nm) 0.000<0.05 Model Significant 
IMEP (Bar) 0.000<0.05 Model Significant 
Indicated thermal efficiency 0.000<0.05 Model Significant 
Specific fuel consumption 
(g/kWh) 

0.000<0.05 Model Significant 

COV IMEP (%) 0.000<0.05 Model Significant 
HC (ppm) 0.000<0.05 Model Significant 

 
Table 7. Prediction performance of the models  

 
Table 7. Continued. 

 
Run (i) 

Specific fuel consumption (g/kWh) COV IMEP (%) HC (ppm) 

𝑌𝑖4 𝑌̂𝑖4 𝑃𝐸𝑖4(%) 𝑌𝑖5 𝑌̂𝑖5 𝑃𝐸𝑖5(%) 𝑌𝑖6 𝑌̂𝑖6 𝑃𝐸𝑖6 (%) 

1 322.72 319.12 1.13 4.26 4.18 1.86 392 374.0 4.81 
2 283.52 284.40 0.31 3.22 3.12 3.16 687.8 697.4 1.37 
3 288.26 288.93 0.23 3.78 3.80 0.55 585.8 558.2 4.95 
4 282.06 278.46 1.30 3.27 3.36 2.68 567.6 586.2 3.17 
5 275.13 275.90 0.28 2.78 2.96 6.16 543 538.3 0.88 
6 284.62 289.29 1.61 4.19 4.02 4.23 397 419.0 5.25 
7 271.95 280.07 2.90 3.49 3.43 1.94 405 422.3 4.10 
8 255.75 255.44 0.12 3.30 3.23 2.06 488 494.6 1.33 
9 251.95 247.24 1.90 2.23 2.41 7.62 461 456.6 0.96 

10 269.05 267.57 0.55 2.72 2.67 1.72 360.8 342.5 5.35 
11 266.08 264.18 0.72 2.35 2.34 0.36 389 384.3 1.22 

Run 
(i) 

Factors Effective torque (Nm) IMEP (Bar) Indicated thermal efficiency 

𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑋𝑖4 𝑋𝑖5 𝑌𝑖1 𝑌̂𝑖1 𝑃𝐸𝑖1 (%) 𝑌𝑖2 𝑌̂𝑖2 𝑃𝐸𝑖2 (%) 𝑌𝑖3 𝑌̂𝑖3 𝑃𝐸𝑖3 (%) 

1 9 20 353 1800 1.71 6.78 6.66 1.74 4.60 4.57 0.66 0.24 0.24 0.51 
2 9 20 373 800 1.6 9.45 9.26 2.02 4.79 4.76 0.68 0.29 0.29 1.37 
3 9 20 373 1200 1.68 8.42 8.49 0.77 4.64 4.59 1.08 0.27 0.28 3.20 
4 9 20 373 1200 1.99 7.86 7.95 1.11 4.35 4.27 1.89 0.29 0.29 0.06 
5 9 40 373 800 1.63 8.80 8.84 0.40 5.02 5.25 4.25 0.27 0.28 0.82 
6 9 40 373 1200 1.5 8.34 8.49 1.72 5.69 5.73 0.78 0.26 0.26 2.22 
7 10 20 313 1600 1.97 5.30 4.98 6.51 5.10 5.22 2.29 0.29 0.29 0.19 
8 10 40 313 800 1.09 12.45 12.51 0.50 9.05 8.84 2.38 0.32 0.32 0.60 
9 10 40 313 800 1.38 10.92 11.12 1.83 7.27 7.50 3.04 0.34 0.34 0.20 

10 10 40 333 1200 1.81 8.75 8.93 1.96 5.90 5.92 0.43 0.30 0.31 0.86 
11 10 40 353 1000 2.31 6.92 6.83 1.28 4.85 4.83 0.30 0.31 0.31 1.71 
12 10 40 353 1200 1.92 8.05 8.02 0.42 5.47 5.42 0.96 0.30 0.29 2.83 
13 10 40 353 1600 1.68 7.17 7.46 3.91 6.03 6.02 0.14 0.25 0.26 0.48 
14 10 60 353 800 1.6 8.69 8.40 3.42 6.85 6.43 6.45 0.29 0.29 0.15 
15 10 60 353 1000 1.65 7.69 7.59 1.28 6.34 6.45 1.60 0.28 0.29 2.72 
16 11 40 353 800 2.56 7.66 8.08 5.25 4.34 4.28 1.41 0.31 0.31 1.70 
17 11 60 373 800 1.58 10.72 10.65 0.67 5.68 5.93 4.09 0.30 0.30 0.14 
18 11 60 373 800 1.68 10.23 9.97 2.56 5.53 5.57 0.75 0.31 0.31 1.18 
19 12 20 313 800 2.89 6.55 6.43 1.89 4.46 4.48 0.52 0.30 0.30 0.15 
20 12 20 313 1000 1.65 10.10 9.44 7.02 5.09 5.37 5.15 0.35 0.34 0.78 
21 12 20 313 1000 1.76 8.84 9.13 3.20 5.03 5.11 1.39 0.35 0.34 3.12 
22 12 20 313 1200 1.71 9.33 8.91 4.77 5.19 5.26 1.37 0.32 0.33 3.90 
23 12 20 313 1200 1.9 7.45 8.29 10.14 4.92 4.91 0.07 0.34 0.33 2.37 
24 12 20 313 1200 2.18 6.85 7.36 6.99 4.89 4.63 5.53 0.31 0.32 2.41 
25 12 20 313 1400 1.82 7.20 7.92 9.10 5.17 5.09 1.68 0.32 0.32 0.52 
26 12 20 313 1400 2.18 7.05 6.58 7.12 4.71 4.75 0.92 0.30 0.30 0.67 
27 12 20 313 1600 1.94 6.65 6.58 1.04 5.07 4.97 1.99 0.30 0.29 1.27 
28 12 20 373 800 2.96 6.65 6.50 2.29 3.59 3.62 0.86 0.25 0.25 0.13 
29 12 40 313 800 1.67 15.45 15.61 1.01 6.50 6.05 7.54 0.37 0.37 0.76 
30 12 40 313 1000 1.71 14.59 15.12 3.50 6.27 6.06 3.46 0.34 0.36 4.60 
31 12 40 313 1200 1.77 15.26 14.26 7.02 5.97 6.03 0.97 0.35 0.35 0.40 
32 12 40 333 800 1.69 15.80 15.62 1.12 5.29 5.48 3.43 0.35 0.35 1.33 
33 12 40 333 1000 1.76 15.70 14.88 5.54 5.22 5.45 4.24 0.35 0.35 1.40 
34 12 40 353 800 1.71 15.34 14.82 3.49 4.91 4.90 0.21 0.34 0.34 0.37 
35 12 40 353 1200 2.43 9.57 9.72 1.58 4.25 4.36 2.63 0.31 0.31 1.56 
36 12 40 373 800 1.74 12.58 13.16 4.41 4.46 4.28 4.22 0.33 0.33 1.23 
37 12 40 373 1200 1.94 10.72 10.71 0.07 4.46 4.33 2.84 0.33 0.33 0.28 
38 12 40 373 1600 2.15 7.10 6.98 1.65 4.40 4.61 4.61 0.30 0.30 0.06 
39 12 60 313 800 1.83 17.21 16.47 4.50 5.98 6.09 1.82 0.39 0.38 1.47 
40 12 60 313 1400 2.04 12.10 12.46 2.89 6.33 6.32 0.18 0.33 0.33 0.94 
41 12 60 333 800 1.68 16.40 17.47 6.13 5.85 6.11 4.23 0.36 0.36 1.72 
42 12 60 333 1000 1.74 16.22 16.48 1.56 6.13 6.15 0.41 0.36 0.36 0.88 
43 12 60 333 1200 1.78 15.50 15.39 0.74 6.02 6.28 4.11 0.35 0.35 0.41 
44 12 60 353 800 1.69 15.71 16.36 3.98 5.64 5.52 2.12 0.35 0.35 0.42 
45 12 60 353 1000 1.81 15.70 14.81 5.98 5.63 5.42 3.82 0.36 0.35 2.57 
46 12 60 353 1200 1.82 13.78 13.84 0.45 5.67 5.68 0.30 0.34 0.34 0.40 
47 12 60 353 1400 1.95 11.25 11.61 3.12 5.94 5.66 4.96 0.33 0.33 1.72 
48 12 60 353 1400 2.08 10.80 10.49 2.96 5.44 5.42 0.47 0.31 0.32 5.07 
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Run (i) 

Specific fuel consumption (g/kWh) COV IMEP (%) HC (ppm) 

𝑌𝑖4 𝑌̂𝑖4 𝑃𝐸𝑖4(%) 𝑌𝑖5 𝑌̂𝑖5 𝑃𝐸𝑖5(%) 𝑌𝑖6 𝑌̂𝑖6 𝑃𝐸𝑖6 (%) 
12 273.95 276.79 1.03 2.65 2.79 5.04 366.2 349.4 4.81 
13 305.76 303.81 0.64 3.26 3.47 5.91 263.6 287.3 8.26 
14 271.96 275.74 1.37 2.85 2.65 7.85 296.8 287.1 3.38 
15 282.92 279.13 1.36 2.98 3.00 0.81 242.8 249.6 2.73 
16 266.42 266.47 0.02 2.22 2.02 9.78 373 384.4 2.96 
17 269.89 266.20 1.38 3.12 3.09 0.81 400 395.3 1.20 
18 264.15 267.17 1.13 2.86 2.92 2.16 392 384.8 1.88 
19 253.75 254.28 0.21 3.12 3.20 2.56 429.4 424.1 1.26 
20 249.14 251.37 0.89 4.49 4.50 0.35 372.4 378.0 1.48 
21 245.42 251.53 2.43 4.33 4.24 2.11 342 377.7 9.44 
22 259.42 256.42 1.17 4.46 4.61 3.26 378.6 363.4 4.18 
23 255.51 256.39 0.34 4.24 4.26 0.48 381.4 369.6 3.19 
24 260.25 256.42 1.50 4.09 3.96 3.50 393.6 384.6 2.34 
25 264.51 264.48 0.01 4.51 4.59 1.76 373.6 360.4 3.65 
26 269.91 263.88 2.28 4.32 4.24 1.79 376.6 388.1 2.97 
27 275.51 275.45 0.02 4.49 4.58 1.95 365 370.6 1.52 
28 279.64 280.36 0.26 3.80 3.80 0.10 343 339.2 1.13 
29 227.82 229.71 0.83 3.07 2.94 4.26 518.4 482.8 7.37 
30 236.62 232.72 1.68 3.14 3.19 1.71 496 472.1 5.06 
31 242.60 238.96 1.53 3.55 3.36 5.45 446.6 468.2 4.61 
32 236.82 239.26 1.02 3.15 3.10 1.41 421.6 423.2 0.37 
33 237.65 241.42 1.56 3.31 3.28 0.88 408.2 407.1 0.27 
34 241.82 242.16 0.14 3.39 3.43 1.16 359.8 388.8 7.46 
35 255.46 256.21 0.29 3.23 3.44 6.04 372 380.5 2.23 
36 247.12 238.66 3.55 3.85 3.91 1.54 395 379.5 4.09 
37 240.78 243.29 1.03 4.14 4.03 2.73 346.4 345.6 0.24 
38 253.72 260.01 2.42 4.24 4.14 2.30 357 358.5 0.43 
39 227.03 225.16 0.83 2.16 2.33 6.95 435.2 473.3 8.06 
40 243.16 247.00 1.55 3.21 3.21 0.26 515 504.1 2.17 
41 234.76 234.43 0.14 2.66 2.63 0.97 464.8 456.6 1.80 
42 235.15 237.79 1.11 2.96 2.86 3.70 456.4 449.4 1.56 
43 239.73 244.02 1.76 3.06 3.05 0.25 457.6 452.4 1.16 
44 236.78 238.44 0.70 2.83 2.94 4.02 444.4 441.2 0.74 
45 238.94 241.93 1.24 3.13 3.07 1.83 411.8 425.0 3.11 
46 248.72 246.39 0.94 3.18 3.28 2.92 411 427.0 3.75 
47 258.64 256.05 1.01 3.45 3.38 1.89 432.4 432.4 0.00 
48 265.75 258.14 2.95 3.37 3.40 1.08 449.2 431.3 4.14 

 
Table 8. The results of verifications  

Run 
(i) 

Factors Effective torque (Nm) IMEP (Bar) Indicated thermal efficiency 

𝑋𝑖1 𝑋𝑖2 𝑋𝑖3 𝑋𝑖4 𝑋𝑖5 𝑌𝑖1 𝑌̂𝑖1 𝑃𝐸𝑖1 (%) 𝑌𝑖2 𝑌̂𝑖2 𝑃𝐸𝑖2 (%) 𝑌𝑖3 𝑌̂𝑖3 𝑃𝐸𝑖3 (%) 

49 9 20 333 1000 1.45 9.59 9.64 0.54 5.98 5.67 5.49 0.31 0.32 2.40 
50 9 20 353 1600 1.75 6.90 7.57 8.79 5.05 4.62 9.42 0.25 0.27 4.93 
51 9 40 373 1400 1.63 7.58 7.11 6.58 5.84 5.45 7.19 0.25 0.25 1.56 
52 9 40 373 1400 1.72 7.24 6.67 8.60 5.48 5.27 3.99 0.24 0.25 4.57 
53 10 40 333 1400 1.67 8.56 9.02 5.12 6.40 6.29 1.70 0.28 0.28 0.84 
54 10 40 353 1000 1.95 7.97 8.54 6.64 5.57 5.22 6.62 0.32 0.31 4.61 
55 10 40 353 1400 1.72 7.42 8.24 9.91 6.00 5.89 1.92 0.27 0.28 1.37 
56 10 60 333 800 1.35 10.10 10.76 6.17 7.83 7.91 1.05 0.32 0.30 7.66 
57 12 40 353 800 1.81 14.68 14.38 2.10 4.57 4.62 1.07 0.37 0.34 8.88 
58 12 40 353 800 1.99 13.24 13.57 2.43 4.43 4.21 5.16 0.36 0.34 7.58 
59 12 40 373 1200 1.94 10.72 10.71 0.07 4.46 4.33 2.84 0.33 0.33 0.28 
60 12 40 373 1200 2.22 9.79 9.31 5.18 4.24 4.03 5.31 0.32 0.32 1.23 
61 12 60 333 1200 1.89 14.71 14.45 1.82 5.93 5.97 0.74 0.35 0.34 2.67 

 
Table 8. Continued. 

 
Run (i) 

Specific fuel consumption (g/kWh) COV IMEP (%) HC (ppm) 

𝑌𝑖4 𝑌̂𝑖4 𝑃𝐸𝑖4(%) 𝑌𝑖5 𝑌̂𝑖5 𝑃𝐸𝑖5(%) 𝑌𝑖6 𝑌̂𝑖6 𝑃𝐸𝑖6 (%) 

49 263.53 268.64 1.90 3.08 3.21 4.28 593 574.6 3.21 
50 319.86 301.02 6.26 4.07 3.94 3.29 431 424.8 1.46 
51 293.40 294.90 0.51 4.23 4.12 2.53 335 368.2 9.01 
52 305.63 291.97 4.68 4.39 4.03 8.72 381.4 372.0 2.54 
53 283.49 282.01 0.52 3.30 3.09 6.72 287 317.0 9.46 
54 265.40 270.46 1.87 2.22 2.37 6.37 342.6 380.5 9.97 
55 291.74 290.14 0.55 3.23 3.24 0.37 300.4 315.9 4.89 
56 260.82 266.35 2.08 3.05 2.77 9.91 309.8 293.7 5.47 
57 230.55 243.95 5.49 3.21 3.22 0.29 384.2 383.7 0.12 
58 235.61 247.20 4.69 2.98 2.92 1.87 357 376.8 5.26 
59 240.78 243.29 1.03 4.14 4.03 2.73 346.4 345.6 0.24 
60 251.95 249.06 1.16 3.82 3.80 0.52 361.6 359.3 0.65 
61 236.86 245.33 3.45 3.06 3.00 1.81 485.2 444.8 9.08 
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Figure 7. The verification results of the suggested models 

 
Table 8 depicts the verification results of the suggested 

models. In the verification phase, 13 additional experimental runs 
that were not used in the mathematical modeling phase were 
performed (Figure 7). 

The presented results in Tables 7 and 8 show that the 
suggested models could successfully fit the experimental data with 
a high accuracy. The MSGO algorithm was performed using 
MATLAB. The maximum number of iterations and population size 
were chosen as 30 and 2000, respectively. The number of search 
agents and the number of iterations were determined by the 
suggested values in the literature (Naik, 2021; Naik et al., 2020). 
The studied issue assumed as a constrained continuous 
optimization problem in the modeling process (Ileri et al., 2020; 
Karaoglan, 2021; Karaoglan and Baydeniz, 2021). The regression 
models presented in Eqs. (12) to (17) were applied for this 
purpose. The importance of the responses at the optimization 
phase is defined by giving weights to them in the goal function Z. 
The weights for [Y1-Y6] are defined as 20%, 5%, 10%, 20%, 20%, 
and 25% respectively. 

1,coded 1 2,coded 2

3,coded 3 4,coded 4

5,coded 5 6,coded 6

ˆ ˆ(0.20)| / max( )| (0.05)| / max( )|

ˆ ˆ(0.10)| / max( )| (0.20)| / max( )|

ˆ ˆ(0.20)| / max( )| (0.25)| / max( )|

i i

i i

i i

Z Y Y Y Y

Y Y Y Y

Y Y Y Y

= + + +

− −

−

                       (19) 

 

       

 
1 2 3 4

5

min  s.t. 1,1 ; 1,1 ; 1,1 ; 1,1 ;

1,1

Z X X X X

X

 −  −  −  −

 −

    (20) 

                            
The max (𝑌𝑖) values are shown in Table 4. Table 9 shows the 
verification results for this optimized factor-level combination. 
The results indicate that the overall PE (%) is acceptable. The PE 
(%) for HC (ppm) seems quite high but if you notice, the 
experimentally observed value for the HC (ppm) value that is 
desired to be minimized is much lower than the estimated value. 

Therefore, although the PE (%) value is 13.08%, the observed 
value is actually lower than expected in a positive way. 
 
 

Table 9. Verification for the suggested values 
Optimized responses Observed 

(𝑌𝑖) 
Predicted 
(𝑌̂𝑖) 

PEi  
(%) 

Effective torque (Nm) 16.58 17.92 7.48 
IMEP (Bar) 6.63 6.73 1.49 
Indicated thermal efficiency 0.36 0.38 5.26 
Specific fuel consumption (g/kWh) 228.36 224.16 1.87 
COV IMEP (%) 2.54 2.52 0.79 
HC (ppm) 432.4 497.49 13.08 

 

4. Conclusions 
 

This study aimed to examine the recently invented and promising 
human-based optimization algorithm known as modified social group 
optimization to optimize LTC HCCI engine performance, combustion, 
and emission parameters. The following conclusions are drawn from 
this study: 
• The calculated R2 obtained from this study show that the 

compression ratio (X1), RON (X2), intake air temperature (X3), 
engine speed (X4), and lambda (X5) are sufficient to model the 
responses (effective torque, IMEP, indicated thermal 
efficiency, specific fuel consumption, COV IMEP, and HC). 

• In the verification phase of this study, 13 additional 
experimental runs that were not used in the mathematical 
modeling phase were used. It was found that the regression 
models fit the observed values well with a low PE (%). 

• The MSGO algorithm suggested the best value for studied 
parameters as X1=11.47, X2=60, X3=313, X4=800, and X5=1.45. 
The Verification results show satisfying results with a high 
performance.  

• The results indicate that the recently invented MSGO 
algorithm can effectively optimize these types of problems.  
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