A multidisciplinary Journal in the field of Agricultural Engineering

Document Type : Original Article

Authors

1 Department of Paper Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Biosystems Engineering, Shahrekord University, Shahrekord, Iran.

3 Department of Cellulose Industries Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

10.22069/bere.2025.22951.1003

Abstract

Pyrolysis is a promising process for converting lignocellulosic materials to high-value-added products (bio-oil, biochar, and syngas). This study aimed to produce and characterize bio-oil obtained from pine cone via pyrolysis using a fixed bed reactor system (FBRS). This study investigated the effect of temperature (500, 600, and 850 °C) on the pyrolysis product yield. The findings showed that with increasing the temperature, the bio-oil and gas yield increase, and the bio-char decreases. The highest calorific value of bio-oil (23.74 MJ/kg) and bio-char (32.89 MJ/kg) was obtained at 600 and 850 °C, respectively. The optimal pyrolysis temperature is 850 °C, which maximizes syngas production at 45.5%, making it the most favorable condition for syngas-focused applications. At this temperature, the yields of bio-oil and biochar are 36.2% and 18.3%, respectively. The qualitative analysis conducted through gas chromatography-mass spectrometry (GC/MS) revealed that the bio-oil produced from the pyrolysis of pine cones is a complex mixture of various organic compounds, including but not limited to aldehydes, alcohols, organic acids, furans, phenolic compounds, and several aromatic substances. The presence of these bioactive compounds underscores the potential utility of this bio-oil as a viable biofuel, offering promising opportunities for renewable energy solutions and reduced dependence on fossil fuels.

Graphical Abstract

Optimization of pine cone pyrolysis in a fixed-bed reactor: Effects of temperature and product characterization

Highlights

Research Highlights:

  • Optimization of pine cone pyrolysis was achieved through temperature control.
  • The effects of 500°C, 600°C, and 850 °C on product yields and properties were evaluated.
  • Syngas yield peaked at 45.5% at 850 °C, demonstrating high energy potential.
  • Biochar characterization revealed increased fixed carbon and calorific value at higher temperatures.
  • This study highlights the sustainability of utilizing pine cones for bioenergy production.

Keywords

Agayev, S., & Ozdemir, O. (2019). Fabrication of high density polyethylene composites reinforced with pine cone powder: Mechanical and low velocity impact performances. Materials Research Express, 6(4), 045312. https://doi.org/10.1088/2053-1591/aafc42
Ahmed, I., & Gupta, A. K. (2009). Syngas yield during pyrolysis and steam gasification of paper. Applied Energy, 86(9), 1813–1821. https://doi.org/10.1016/j.apenergy.2009.01.025
Aro, E. M. (2016). From first generation biofuels to advanced solar biofuels. Ambio, 45(1), 24–31. https://doi.org/10.1007/s13280-015-0730-0
Bajpai, P. (2019). Current Trends and the Future of the Algae-Based Biofuels Industry. In Third Generation Biofuels (pp. 67–70). Springer. https://doi.org/10.1007/978-981-13-2378-2_8
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic press. https://doi.org/10.1016/C2016-0-04056-1
Boutaieb, M., Guiza, M., Román, S., Nogales, S., Ledesma, B., & Ouederni, A. (2020). Pine cone pyrolysis: Optimization of temperature for energy recovery. Environmental Progress and Sustainable Energy, 39(1), 13272. https://doi.org/10.1002/ep.13272
Brebu, M., Ucar, S., Vasile, C., & Yanik, J. (2010). Co-pyrolysis of pine cone with synthetic polymers. Fuel, 89(8), 1911–1918. https://doi.org/10.1016/j.fuel.2010.01.029
Chen, D., Mei, J., Li, H., Li, Y., Lu, M., Ma, T., & Ma, Z. (2017). Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresource Technology, 228, 62–68.        https://doi.org/10.1016/j.biortech.2016.12.088
Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., Chen, Z., & Liu, J. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresource Technology, 124, 190–198. https://doi.org/10.1016/j.biortech.2012.08.013
Clauser, N. M., Felissia, F. E., Area, M. C., & Vallejos, M. E. (2021). A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renewable and Sustainable Energy Reviews, 139, 110687. https://doi.org/10.1016/j.rser.2020.110687
Dawood, S., Sen, T. K., & Phan, C. (2017). Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresource Technology, 246, 76–81. https://doi.org/10.1016/j.biortech.2017.07.019
de Almeida, M. A., & Colombo, R. (2023). Production chain of first-generation sugarcane bioethanol: characterization and value-added application of wastes. BioEnergy Research, 16(2), 924–939. https://doi.org/10.1007/s12155-021-10301-4
Dehghani Firouzabadi, M., & Tatari, A. (2024). SO2-ethanol–water (SEW) and Kraft pulp and paper properties of Eldar pine (Pinus eldarica): a comparison study. Biomass Conversion and Biorefinery, 14, 14745–14753. https://doi.org/10.1007/s13399-023-03785-x
Demirbas, A. (2007). Effect of temperature on pyrolysis products from biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(4), 329–336. https://doi.org/10.1080/009083190965794
Durak, H. (2015). Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Conversion and Management, 99, 282–298.https://doi.org/10.1016/j.enconman.2015.04.050
Encinar, J. M., González, J. F., Martínez, G., & Román, S. (2009). Catalytic pyrolysis of exhausted olive oil waste. Journal of Analytical and Applied Pyrolysis, 85, 197–203. https://doi.org/10.1016/j.jaap.2008.11.018
Ghorbannezhad, P., Dehghani Firouzabadi, M., & Ghasemian, A. (2018). Catalytic fast pyrolysis of sugarcane bagasse pith with HZSM-5 catalyst using tandem micro-reactor-GC-MS. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(1), 15–21.https://doi.org/10.1080/15567036.2017.1381785
Ghorbannezhad, P., Firouzabadi, M. D., Ghasemian, A., de Wild, P. J., & Heeres, H. J. (2018). Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). Journal of Analytical and Applied Pyrolysis, 131, 1–8.https://doi.org/10.1016/j.jaap.2018.02.019
Ghorbannezhad, P., Kool, F., Rudi, H., & Ceylan, S. (2020). Sustainable production of value-added products from fast pyrolysis of palm shell residue in tandem micro-reactor and pilot plant. Renewable Energy, 145, 663–670. https://doi.org/10.1016/j.renene.2019.06.063
Gogoi, S., Bhuyan, N., Sut, D., Narzari, R., Gogoi, L., & Kataki, R. (2020). Agricultural Wastes as Feedstock for Thermo-Chemical Conversion: Products Distribution and Characterization. In Energy Recovery Processes from Wastes (pp. 115–128). Springer. https://doi.org/10.1007/978-981-32-9228-4_10
Gonçalves, E. V., Teodoro, C., Seixas, F. L., Canesin, E. A., Olsen Scaliante, M. H. N., Gimenes, M. L., & De Souza, M. (2017). Pyrolysis of sugarcane bagasse in a fixed bed reactor: Influence of operational conditions in the distribution of products. Canadian Journal of Chemical Engineering, 95(12), 2249–2257. https://doi.org/10.1002/cjce.22968
Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129, 134–149.
Gulsoy, S. K., & Ozturk, F. (2016). Kraft pulping properties of european black pine cone. Maderas: Ciencia y Tecnologia, 17(4), 875–882. http://doi.org/10.4067/S0718-221X2015005000076 
Islam, M. R., Haniu, H., Islam, M. N., & Uddin, M. S. (2010). Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed pyrolysis technology. Journal of Thermal Science and Technology, 5(1), 11–23. https://doi.org/10.1299/jtst.5.11
Islam, M. R., Islam, M. N., & Nabi, M. N. (2002). Bio-crude-oil from fluidized bed pyrolysis of rice straw and its characterization. International Energy Journal, 3(1), 1–12.
Jambeiro, T. A., Silva, M. F. S., Pereira, L. G. G., Da Silva Vasconcelos, D., Batalha Silva, G., Figueirêdo, M. B., Lima, S. B., & Pires, C. A. M. (2018). Fast pyrolysis of sisal residue in a pilot fluidized bed reactor. Energy and Fuels, 32(9), 9478–9492.        https://doi.org/10.1021/acs.energyfuels.8b01718
Jeong, J., Lee, H. W., Jang, S. H., Ryu, S., Kim, Y. M., Park, R. S., Jung, S. C., Jeon, J. K., & Park, Y. K. (2019). In-situ catalytic fast pyrolysis of pinecone over HY catalysts. Catalysts, 9(12), 1034.https://doi.org/10.3390/catal9121034
Kabir, G., & Hameed, B. H. (2017). Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, 70, 945–967.https://doi.org/10.1016/j.rser.2016.12.001
Li, R., Zeng, K., Soria, J., Mazza, G., Gauthier, D., Rodriguez, R., & Flamant, G. (2016). Product distribution from solar pyrolysis of agricultural and forestry biomass residues. Renewable Energy, 89, 27–35.https://doi.org/10.1016/j.renene.2015.11.071
Liu, S., Tuo, K., Wang, L., Chen, G., Ma, W., & Fang, M. (2020). Microwave-assisted metal-catalyzed pyrolysis of low-rank coal: Promising option towards obtaining high-quality products. Journal of the Energy Institute, 93(4), 1602–1614.       https://doi.org/10.1016/j.joei.2020.01.022
Mabaso, N., Naidoo, E. B., & Ofomaja, A. (2018). Synthesis, structural and morphological studies of Pine Cone powder by fenton oxidation and grafting with acrylic acid using ammonium ceric nitrate as initiator. National Products: An Indian Journal, 14(1), 116.
Mangut, V., Sabio, E., Gañán, J., González, J. F., Ramiro, A., González, C. M., Román, S., & Al-Kassir, A. (2006). Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Processing Technology, 87(2), 109–115.https://doi.org/10.1016/j.fuproc.2005.08.006
Nanda, S., Gong, M., Hunter, H. N., Dalai, A. K., Gökalp, I., & Kozinski, J. A. (2017). An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Processing Technology, 168, 84–96. https://doi.org/10.1016/j.fuproc.2017.08.017
Nazarpour, M., Taghizadeh-Alisaraei, A., Asghari, A., Abbaszadeh-Mayvan, A., & Tatari, A. (2022). Optimization of biohydrogen production from microalgae by response surface methodology (RSM). Energy, 253, 124059. https://doi.org/10.1016/j.energy.2022.124059
Ofomaja, A. E., Naidoo, E. B., & Modise, S. J. (2010). Surface modification of pine cone powder and its application for removal of Cu(II) from wastewater. Desalination and Water Treatment, 19(1–3), 275–285. https://doi.org/10.5004/dwt.2010.1230
Rowell, R. (1984). The chemistry of solid wood. The Chemistry of Solid Wood: Based on a Short Course and Symposium Sponsored by the Division of Cellulose, Paper and Textile Chemistry at the 185th Meeting of the American Chemical Society, Seattle, WA, March 20-25, 70–72.
Safari, G. H., Safari, M., & Moussakhani, N. (2024). An overview of production sources, advantages and disadvantages of biofuels as a renewable energy source. Journal of Environmental Science Studies, 9(1), 8054–8071. https://doi.org/10.22034/jess.2023.388481.1985
Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62–92. https://doi.org/10.1016/j.rser.2016.05.035
Saladini, F., Patrizi, N., Pulselli, F. M., Marchettini, N., & Bastianoni, S. (2016). Guidelines for emergy evaluation of first, second and third generation biofuels. Renewable and Sustainable Energy Reviews, 66, 221–227. https://doi.org/10.1016/j.rser.2016.07.073
Shafaei, H., Taghizadeh-Alisaraei, A., Abbaszadeh-Mayvan, A., & Tatari, A. (2024). Modeling and optimization of alkaline pretreatment conditions for the production of bioethanol from giant reed (Arundo donax L.) biomass using response surface methodology (RSM). Biomass Conversion and Biorefinery, 14, 21669–21684.https://doi.org/10.1007/s13399-023-04152-6
Shahnouri, S. A., Taghizadeh-Alisaraei, A., Abbaszadeh-Mayvan, A., & Tatari, A. (2024). Catalytic microwave pyrolysis of mushroom spent compost (MSC) biomass for bio-oil production and its life cycle assessment (LCA). Biomass Conversion and Biorefinery, 14, 9949–9965. https://doi.org/10.1007/s13399-022-02988-y
Silva, M. B. (2016). Percepção da população assistida sobre a inserção de estudantes de medicina na Unidade Básica de Saúde. In Trabalho de conclusão de curso, 1(9). https://doi.org/10.1017/CBO9781107415324.004
Situmorang, Y. A., Zhao, Z., Chaihad, N., Wang, C., Anniwaer, A., Kasai, Y., Abudula, A., & Guan, G. (2021). Steam gasification of co-pyrolysis chars from various types of biomass. International Journal of Hydrogen Energy, 46(5), 3640–3650.      https://doi.org/10.1016/j.ijhydene.2020.10.199
Song, K., Yeom, E., Seo, S. J., Kim, K., Kim, H., Lim, J. H., & Lee, S. J. (2015). Journey of water in pine cones. Scientific Reports, 5, 9963. https://doi.org/10.1038/srep09963
Suriapparao, D. V, & Vinu, R. (2018). Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and Biomass Valorization, 9(3), 465–477.https://doi.org/10.1007/s12649-016-9815-7
Taghizadeh-Alisaraei, A., Tatari, A., Khanali, M., & Keshavarzi, M. (2023). Potential of biofuels production from wheat straw biomass, current achievements and perspectives: a review. Biofuels, 14(1), 79–92.  https://doi.org/10.1080/17597269.2022.2118779
Tatari, A., Dehghani Firouzabadi, M., & Ghasemian, A. (2024). SO2-alcohol-water (SAW) fractionation of Eldar pine (Pinus eldarica): effects of alcohol type on pulp and paper properties. European Journal of Wood and Wood Products, 83(3), 833–847.https://doi.org/10.1007/s00107-024-02051-9
Valenti, F., Porto, S. M. C., Selvaggi, R., & Pecorino, B. (2020). Co-digestion of by-products and agricultural residues: a bioeconomy perspective for a Mediterranean feedstock mixture. Science of The Total Environment, 700, 134440.        https://doi.org/10.1016/j.scitotenv.2019.134440
Varma, A. K., & Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, 95, 704–717. https://doi.org/10.1016/j.indcrop.2016.11.039
Varma, A. K., & Mondal, P. (2018). Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. Journal of Thermal Analysis and Calorimetry, 131(3), 2057–2072. https://doi.org/10.1007/s10973-017-6727-0
Wang, Z., Li, J., Yan, B., Zhou, S., Zhu, X., Cheng, Z., & Chen, G. (2024). Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 199, 114518.      https://doi.org/10.1016/j.rser.2024.114518
Xu, R. B., Yang, X., Wang, J., Zhao, H. T., Lu, W. H., Cui, J., Cheng, C. L., Zou, P., Huang, W. W., Wang, P., Li, W. J., & Hu, X. L. (2012). Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. International Journal of Molecular Sciences, 13(11), 14262–14277. https://doi.org/10.3390/ijms131114262
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
Yaqoob, H., Teoh, Y. H., Din, Z. U., Sabah, N. U., Jamil, M. A., Mujtaba, M. A., & Abid, A. (2021). The potential of sustainable biogas production from biomass waste for power generation in Pakistan. Journal of Cleaner Production, 307, 127250.        https://doi.org/10.1016/j.jclepro.2021.127250