Abdullaev, F. I. & Frenkel, G. D. (1999). Saffron in biological and medical research. Saffron: Crocus Sativus L, 103–113.
Adhinata, F. D. & Sumiharto, R. (2024). A comprehensive survey on weed and crop classification using machine learning and deep learning. Artificial Intelligence in Agriculture, 13, 45-63. https://doi.org/10.1016/j.aiia.2024.06.005
Admasu, G., Haji, J., Siyum, C., & Ndemo, E. (2024). Impact of Climate Change Adaptation Strategies on Food Security of Farm Households in Rural Dire Dawa Administration, Ethiopia. Sustainable Agriculture Research, 13(2), 1-15. https://doi.org/10.5539/sar.v13n2p1
Alif, M. A. R. & Hussain, M. (2024). YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain. ArXiv Preprint. https://doi.org/10.48550/arXiv.2406.10139
Cheng, B., & Matson, E. T. (2015). A feature-based machine learning agent for automatic rice and weed discrimination. International Conference on Artificial Intelligence and Soft Computing, 517–527.
Fernández, J.-A. (2004). Biology, biotechnology and biomedicine of saffron.
Guerrero, J. M., Ruz, J. J. & Pajares, G. (2017). Crop rows and weeds detection in maize fields applying a computer vision system based on geometry. Computers and Electronics in Agriculture, 142, 461–472. https://doi.org/10.1016/j.compag.2017.09.028
Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199. https://doi.org/10.1016/j.compag.2016.04.024
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1580–1589. https://doi.org/10.1109/CVPR42600.2020.00165
Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13713–13722. https://doi.org/10.1109/CVPR46437.2021.01350
Jeanmart, S., Edmunds, A. J. F., Lamberth, C., & Pouliot, M. (2016). Synthetic approaches to the 2010–2014 new agrochemicals. Bioorganic & Medicinal Chemistry, 24(3), 317–341.https://doi.org/10.1016/j.bmc.2015.12.014
José Bagur, M., Alonso Salinas, G. L., Jiménez-Monreal, A. M., Chaouqi, S., Llorens, S., Martínez-Tomé, M., & Alonso, G. L. (2017). Saffron: An old medicinal plant and a potential novel functional food. Molecules, 23(1), 30. https://doi.org/10.3390/molecules23010030
Kumar, P., & Misra, U. (2024). Deep Learning for Weed Detection: Exploring YOLO V8 Algorithm’s Performance in Agricultural Environments. 2024 2nd International Conference on Disruptive Technologies (ICDT), 255–258. https://doi.org/10.1109/ICDT61202.2024.10489628
Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M. K., & Ahuja, P. S. (2008). State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Reviews International, 25(1), 44–85. https://doi.org/10.1080/87559120802458503
Ministry of Agriculture-Jihad. (2020). Agricultural Statistics, (Vol. II). The Islamic Republic of Iran, Ministry of Agriculture-Jihad, Press. (In Persian).
Narayana, C. L., & Ramana, K. V. (2023). An efficient real-time weed detection technique using YOLOv7. International Journal of Advanced Computer Science and Applications, 14(2).https://doi.org/10.14569/ijacsa.2023.0140265
Peng, M., Zhang, W., Li, F., Xue, Q., Yuan, J., & An, P. (2023). Weed detection with improved YOLO v7. EAI Endorsed Transactions on Internet of Things, 9(3), e1. https://doi.org/10.4108/eetiot.v9i3.3468
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788. https://doi.org/10.1109/CVPR.2016.91
Rodrigo, M. A., Oturan, N., & Oturan, M. A. (2014). Electrochemically assisted remediation of pesticides in soils and water: a review. Chemical Reviews, 114(17), 8720–8745. https://doi.org/10.1021/cr500077e
Shahnoushi, N., Abolhassani, L., Kavakebi, V., Reed, M., & Saghaian, S. (2020). Economic analysis of saffron production. In Saffron (pp. 337–356). Elsevier.https://doi.org/10.1016/B978-0-12-818638-1.00021-6
Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21(2), 110–124. https://doi.org/10.1016/j.tplants.2015.10.015
Sonawane, S., & Patil, N. N. (2024). Deep learning-based weed detection in sesame crops using modified YOLOv5 model. Indian Journal of Weed Science, 56, 194-199.http://doi.org/10.5958/0974-8164.2024.00031.X
Woyessa, D. (2022). Weed control methods used in agriculture. American Journal of Life Science and Innovation, 1(1), 19–26. https://doi.org/10.54536/ajlsi.v1i1.413
Zhou, X., Chen, T., & Zhang, B. (2023). Research on the impact of digital agriculture development on agricultural green total factor productivity. Land, 12(1), 195. https://doi.org/10.3390/land12010195