A multidisciplinary Journal in the field of Agricultural Engineering

Document Type : Review Papers

Author

Department of Biosystem Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

10.22069/bere.2025.23043.1011

Abstract

A lot of waste enters nature from various sources every day, most of which are organic materials. The release or improper disposal of organic waste leads to the destruction of human and animal ecosystems, and the best approach to dispose of this type of waste is anaerobic digestion technology. This technology causes proper disposal and the production of economically valuable materials, which can generally be said to be a win-win approach. In this article, the goal is to produce the highest amount of biogas production to reduce the cost of production rate. Biogas is produced in four stages, and many key factors, including temperature, pH, C/N ratio, residence time, mixing, and moisture, affect biogas production. Each of these factors has an optimal point that can be observed to achieve the highest production rate. In this way, the production cost will be minimized and the majority of the needs of society will be met. Also, to accelerate and increase efficiency, types of pretreatment can be used, which often play a positive role due to the conversion of lignin and silica. Sodium hydroxide is one of the lignocellulosic pretreatments that is widely used. Biological pretreatment has low energy consumption and is environmentally friendly. Zero iron nanoparticles have shown better potential capacity than other nanoparticles. The summary of the studies is that if the coarse material is reduced to small pieces, the feed material concentration is about 8, the C/N ratio is about 25, the pH is neutral and the digester temperature is set to mesophile, the maximum amount of biogas production is achieved. It was also concluded that a definitive opinion cannot be given about the pretreatment because it depends on the materials and digestion conditions.

Graphical Abstract

A review of the effective factors involved in the production of biogas from biomass waste

Highlights

Research Highlights:

  • Control of production waste and global warming
  • Using anaerobic digestion to control production waste and produce products with high economic value
  • Biogas and fertilizer production. Biogas replaces fossil fuels that cause greenhouse gas emissions, and fertilizer replaces harmful chemical fertilizers that are dangerous to human health.
  • The goal is to transform problems into economically valuable materials at the lowest price.
  • By providing optimal conditions for active microorganisms, production increases, which reduces production costs and eliminates the need for energy.

Keywords

Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2012). Anaerobic digestion for global warming control and energy generation—An overview. Renewable and Sustainable Energy Reviews16(5), 3228-3242.‏
Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., ... & Mahmoud, Y. A. G. (2023). Toxicity of heavy metals and recent advances in their removal: a review. Toxics11(7), 580.‏
Alam, M., Sultan, M. B., Mehnaz, M., Fahim, C. S. U., Hossain, S., & Anik, A. H. (2022). Production of biogas from food waste in laboratory scale dry anaerobic digester under mesophilic condition. Energy Nexus7, 100126.‏
Annas, S., Elfering, M., Jantzen, H. A., Scholz, J., & Janoske, U. (2022). Experimental analysis of mixing-processes in biogas plants. Chemical Engineering Science258, 117767.‏
Appels, L., Van Assche, A., Willems, K., Degrève, J., Van Impe, J., & Dewil, R. (2011). Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresource technology102(5), 4124-4130.‏
Cai, Y., Zheng, Z., Schäfer, F., Stinner, W., Yuan, X., Wang, H., ... & Wang, X. (2021). A review about pretreatment of lignocellulosic biomass in anaerobic digestion: Achievement and challenge in Germany and China. Journal of Cleaner Production299, 126885.‏
Celletti, S., Bergamo, A., Benedetti, V., Pecchi, M., Patuzzi, F., Basso, D., ... & Mimmo, T. (2021). Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. Journal of Environmental Management280, 111635.‏
Costa, A., Ely, C., Pennington, M., Rock, S., Staniec, C., & Turgeon, J. (2015). Anaerobic digestion and its applications. US Environmental Protection Agency: Washington, DC, USA, 24.‏
Curry, N., & Pillay, P. (2012). Biogas prediction and design of a food waste to energy system for the urban environment. Renewable energy41, 200-209.‏
de Oliveira, M. C., Bassin, I. D., & Cammarota, M. C. (2022). Microalgae and cyanobacteria biomass pretreatment methods: A comparative analysis of chemical and thermochemical pretreatment methods aimed at methane production. Fermentation8(10), 497.‏
Diltz, R., & Pullammanappallil, P. (2013). Biofuels from algae. Liquid, Gaseous and Solid Biofuels: Conversion Techniques; Fang, Z., Ed, 431-449.‏
Dioha, I. J., Ikeme, C. H., Nafi’u, T., Soba, N. I., & Yusuf, M. B. S. (2013). Effect of carbon to nitrogen ratio on biogas production. International Research Journal of Natural Sciences1(3), 1-10.‏
Elanur, A. D. A. R. (2020). Optimization of cattle manure liquid fraction anaerobic digestion at different temperatures: Modelling by Taguchi method. Sigma Journal of Engineering and Natural Sciences38(4), 1753-1766
Emmanuel, J. K., Nganyira, P. D., & Shao, G. N. (2022). Evaluating the potential applications of brewers' spent grain in biogas generation, food and biotechnology industry: A review. Heliyon8(10).‏
Fang, H. H., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource technology82(1), 87-93.‏
Ferreira, L. C., Nilsen, P. J., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2014). Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chemical Engineering Journal242, 254-259.‏
Ferreira, R. S. (2021). Avaliação da produção de biogás a partir de resíduos de uma indústria de celulose 1. 1–15.
Hao, H., Tian, Y., Zhang, H., & Chai, Y. (2017). Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses. Biodegradation28, 369-381.‏
He, Y., Pang, Y., Liu, Y., Li, X., & Wang, K. (2008). Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy & Fuels22(4), 2775-2781.‏
Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T., & Kobayashi, M. (2002). Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource technology82(3), 209-213.‏
Hosseini, S. E., & Wahid, M. A. (2014). Development of biogas combustion in combined heat and power generation. Renewable and Sustainable Energy Reviews40, 868-875.‏
Ibeto, C., Omoni, V., Fagbohungbe, M., & Semple, K. (2020). Impact of digestate and its fractions on mineralization of 14C-phenanthrene in aged soil. Ecotoxicology and Environmental Safety195, 110482.‏
Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews52, 142-154.‏
Jimenez, J., Grigatti, M., Boanini, E., Patureau, D., & Bernet, N. (2020). The impact of biogas digestate typology on nutrient recovery for plant growth: Accessibility indicators for first fertilization prediction. Waste Management, 117, 18–31.
Jin, P., Bhattacharya, S. K., Williams, C. J., & Zhang, H. (1998). Effects of sulfide addition on copper inhibition in methanogenic systems. Water Research32(4), 977-988.‏
Kainthola, J., Shariq, M., Kalamdhad, A. S., & Goud, V. V. (2019). Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. Journal of environmental management232, 188-196.‏
Kang, X., Zhang, Y., Song, B., Sun, Y., Li, L., He, Y., ... & Yuan, Z. (2019). The effect of mechanical pretreatment on the anaerobic digestion of Hybrid Pennisetum. Fuel252, 469-474.
Karami, K., Karimi, K., Mirmohamadsadeghi, S., & Kumar, R. (2022). Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood. Energy239, 122361.‏
Karri, S., Sierra‐Alvarez, R., & Field, J. A. (2005). Zero valent iron as an electron‐donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering92(7), 810-819.‏
Karthikeyan, O. P., & Visvanathan, C. (2012). Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresource Technology113, 294-302.‏
Kavitha, S., Gondi, R., Kannah, R. Y., Kumar, G., & Banu, J. R. (2022). A review on current advances in the energy and cost effective pretreatments of algal biomass: Enhancement in liquefaction and biofuel recovery. Bioresource technology, 128383.‏
Khaledian, S., Haji Agha Alizade, H., Rasouli, M., & Shadidi, B. (2021). Investigating the Effects of Co2O3, and ZnO, and Fe3O4 Nanoparticles on Methane yield during anaerobic Co-digestion of municipal organic solid waste using BMP Test. Fuel and Combustion14(3), 1-15.‏
Kim, D. H., & Oh, S. E. (2011). Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Management31(9-10), 1943-1948.‏
Kim, I., & Han, J. I. (2012). Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass and Bioenergy46, 210-217.‏
Kim, J. R., & Karthikeyan, K. G. (2021a). Effects of severe pretreatment conditions and lignocellulose-derived furan byproducts on anaerobic digestion of dairy manure. Bioresource Technology340, 125632.‏
Kim, J. R., & Karthikeyan, K. G. (2021b). Solubilization of lignocellulosic biomass using pretreatments for enhanced methane production during anaerobic digestion of manure. ACS ES&T Engineering1(4), 753-760.‏
Kim, J. R., Hu, Y., Zavala, V. M., & Karthikeyan, K. G. (2022). Techno-economic analysis of pretreatments to dairy manure biomass for enhanced biogas production. Bioresource Technology Reports20, 101275.‏
Kim, SG. 2010. System for separation of oil and sludge from food waste leachate korea patent, 10:53-71.
Korai, R. M., & Li, X. (2020). Effect of ultrasonic assisted KOH pretreatment on physiochemical characteristic and anaerobic digestion performance of wheat straw. Chinese Journal of Chemical Engineering28(9), 2409-2416.‏
Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Nagy, K., Minárovits, J., ... & Kovács, K. L. (2015). Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresource Technology178, 254-261.‏
 Kusmiyati, K., Wijaya, D. K., & Hartono, B. R. (2023). Advancements in Biogas Production from Cow Dung: A Review of Present and Future Innovations. In E3S Web of Conferences (Vol. 448, p. 04005). EDP Sciences.‏
Lalman, J., & Bagley, D. M. (2002). Effects of C18 long chain fatty acids on glucose, butyrate and hydrogen degradation. Water research36(13), 3307-3313.‏
Lemmer, A., Naegele, H. J., & Sondermann, J. (2013). How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale agricultural biogas digesters. Energies6(12), 6255-6273.‏
Li, Q., Zhang, W., Yi, F., Yang, Y., Liao, C., & Chu, S. (2020). Effect of Biogas Slurry 932 Pretreatment on Biogas Production Characteristics in Anaerobic Digestion of 933 Waste Flower Straw. China Biogas38(3), 52-56.‏
Li, Z., Chen, C. H., Liu, T., Mathrubootham, V., Hegg, E. L., & Hodge, D. B. (2013). Catalysis with CuII (bpy) improves alkaline hydrogen peroxide pretreatment. Biotechnology and bioengineering110(4), 1078-1086.‏
Lilian, M., Rawlynce, B., Charles, G., & Felix, K. (2023). Potential role of rumen bacteria in modulating milk production and composition of admixed dairy cows. Letters in Applied Microbiology, 76(2), ovad007.‏
Lindmark, J., Leksell, N., Schnürer, A., & Thorin, E. (2012). Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Applied Energy97, 498-502.‏
Lohani, S. P., Chhetri, A., Adhikari, J., & Bakke, R. (2013). Sustainable biogas production potential from urban wastewater in Nepal. International Journal of Environmental Science and Development4(5), 595.‏
Melton, L. A., Lipp, C. W., Spradling, R. W., & Paulson, K. A. (2002). DISMT-Determination of mixing time through color changes. Chemical Engineering Communications189(3), 322-338.‏
Meng, Q., Liu, H., Zhang, H., Xu, S., Lichtfouse, E., & Yun, Y. (2022). Anaerobic digestion and recycling of kitchen waste: a review. Environmental Chemistry Letters20(3), 1745-1762.‏
Møller, H. B., Sørensen, P., Olesen, J. E., Petersen, S. O., Nyord, T., & Sommer, S. G. (2022). Agricultural biogas production—climate and environmental impacts. Sustainability14(3), 1849.‏
Mu, H., Chen, Y., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource technology102(22), 10305-10311.‏
Mulat, D. G., & Feilberg, A. (2015). GC/MS method for determining carbon isotope enrichment and concentration of underivatized short-chain fatty acids by direct aqueous solution injection of biogas digester samples. Talanta143, 56-63.‏
Muvhiiwa, R. F., Matambo, T. S., Chafa, P. M., Chikowore, N., Chitsiga, T., & Low, M. (2016). Effect of temperature and pH on biogas production from cow dung and dog faeces. Africa Insight45(4), 167-181.‏
Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews79, 308-322.‏
Oh, S. T., & Martin, A. D. (2010). Long chain fatty acids degradation in anaerobic digester: thermodynamic equilibrium consideration. Process Biochemistry45(3), 335-345.‏
Okeh, O. C., Onwosi, C. O., & Odibo, F. J. C. (2014). Biogas production from rice husks generated from various rice mills in Ebonyi State, Nigeria. Renewable Energy62, 204-208.‏
Otero-González, L., Field, J. A., & Sierra-Alvarez, R. (2014). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of environmental management135, 110-117.‏
Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. BioMed research international2017(1), 2370927.‏
Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource technology101(22), 8649-8657.‏
Rafieenia, R., Girotto, F., Peng, W., Cossu, R., Pivato, A., Raga, R., & Lavagnolo, M. C. (2017). Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste management59, 194-199.‏
Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and sustainable energy reviews14(7), 2086-2094.‏
Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel261, 116497.‏
Rasouli, M., Ajabshirchi, Y., Mousavi, S. M., Nosrati, M., & Yaghmaei, S. (2015). Process optimization and modeling of anaerobic digestion of cow manure for enhanced biogas yield in a mixed plug-flow reactor using response surface methodology. Biosci Biotech R Asia12, 2333-2344.‏
Rea, J. (2014). Kinetic modeling and experimentation of anaerobic digestion (Doctoral dissertation, Massachusetts Institute of Technology).‏
Roussel, J. (2013). Metal behaviour in anaerobic sludge digesters supplemented with trace nutrients (Doctoral dissertation, University of Birmingham).‏
Saratale, G. D., & Oh, M. K. (2015). Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC advances5(118), 97171-97179.‏
Sharma, D. K. (2002). Studies on availability and utilization of onion storage waste in a rural habitat (Doctoral dissertation, IIT Delhi).‏
Show, B. K., Shivakumaran, G., Koley, A., Ghosh, A., Chaudhury, S., Hazra, A. K., & Balachandran, S. (2023). Effect of thermal and NaOH pretreatment on water hyacinth to enhance the biogas production. Environmental Science and Pollution Research30(57): 120984-120993.‏
Siegmeier, T., Blumenstein, B., & Möller, D. (2015). Farm biogas production in organic agriculture: System implications. Agricultural Systems, 139, 196–209.
Slepetiene, A., Volungevicius, J., Jurgutis, L., Liaudanskiene, I., Amaleviciute-Volunge, K., Slepetys, J., & Ceseviciene, J. (2020). The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Management102, 441-451.‏
Solé-Bundó, M., Carrère, H., Garfí, M., & Ferrer, I. (2017). Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Res 24: 199–206.‏
Song, Z., GaiheYang, Liu, X., Yan, Z., Yuan, Y., & Liao, Y. (2014). Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PloS one9(4), e93801.‏
Suanon, F., Sun, Q., Li, M., Cai, X., Zhang, Y., Yan, Y., & Yu, C. P. (2017). Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of hazardous materials321, 47-53.‏
Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., & Zhu, T. (2014). Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Management34(6), 1025-1034.‏
Sundberg, M. (2010). Pretreatment of Biomass Investigation of suitable pretreatment of Icelandic biomass for biofuel production. n.‏
Vu, H. P., Nguyen, L. N., Vu, M. T., Johir, M. A. H., McLaughlan, R., & Nghiem, L. D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment743, 140630.‏
Wagner, A. O., Lins, P., Malin, C., Reitschuler, C., & Illmer, P. (2013). Impact of protein-, lipid-and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. Science of the Total Environment458, 256-266.‏
Wang, W., & Lee, D. J. (2021). Valorization of anaerobic digestion digestate: A prospect review. Bioresource Technology323, 124626.‏
Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource technology120, 78-83.‏
Whelan, M. J., Everitt, T., & Villa, R. (2010). A mass transfer model of ammonia volatilisation from anaerobic digestate. Waste Management30(10), 1808-1812.‏
Wid, N., & Raudin, N. (2023, June). Recovery of biogas from food waste using treated and untreated anaerobic digestion. In IOP Conference Series: Earth and Environmental Science (Vol. 1205, No. 1, p. 012004). IOP Publishing.‏
Wirth, B., Reza, T., & Mumme, J. (2015). Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresource Technology, 198, 215–222.
Xia, Z. M., Li, X. S., Chen, Z. Y., Li, G., Yan, K. F., Xu, C. G., ... & Cai, J. (2016). Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent. Applied Energy162, 1153-1159.‏
Yu, Q., Liu, R., Li, K., & Ma, R. (2019). A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews107, 51-58.‏
Zabaleta, I., & Rodic, L. (2015). Recovery of essential nutrients from municipal solid waste–Impact of waste management infrastructure and governance aspects. Waste Management44, 178-187.‏
Zhan, Y., Zhu, J., Xiao, Y., Wu, S., & Aka, R. J. N. (2023). Efficient methane production from anaerobic co-digestion of poultry litter with wheat straw in sequencing batch reactor: Effects of carbon-to-nitrogen ratio, total solids, and hydraulic retention time. Bioresource Technology381, 129127.‏
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews38, 383-392.‏
Zhang, L., & Jahng, D. (2012). Long-term anaerobic digestion of food waste stabilized by trace elements. Waste management32(8), 1509-1515.‏
Zhang, Y., Yue, D., Liu, J., He, L., & Nie, Y. (2012). Effect of organic compositions of aerobically pretreated municipal solid waste on non-methane organic compound emissions during anaerobic degradation. Waste Management32(6), 1116-1121.‏
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science42, 35-53.‏
Zhou, J., Qu, A., Ming, S., Zhang, Y., & Duan, N. (2022). Binary-component anaerobic co-digestion: Synergies and microbial profiles. Renewable Energy201, 1-10.‏
Zhou, J., Yan, B. H., Wang, Y., Yong, X. Y., Yang, Z. H., Jia, H. H., ... & Wei, P. (2016). Effect of steam explosion pretreatment on the anaerobic digestion of rice straw. RSC advances6(91), 88417-88425.