Abdelmalek, Z., Alamian, R., Safdari Shadloo, M., Maleki, A., & Karimipour, A. (2021). Numerical study on the performance of a homogeneous charge compression ignition engine fueled with different blends of biodiesel.
Journal of Thermal Analysis and Calorimetry,
143(3), 2695-2705.
https://doi.org/10.1007/s10973-020-09513-1
AlShabi, M., Ghenai, C., Bettayeb, M., Ahmad, F. F., & El Haj Assad, M. (2021). Multi-group grey wolf optimizer (MG-GWO) for estimating photovoltaic solar cell model.
Journal of Thermal Analysis and Calorimetry,
144(5), 1655-1670.
https://doi.org/10.1007/s10973-020-09895-2
Atmanlı, A., Yüksel, B., Ileri, E., & Karaoglan, A. D. (2015). Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics. Energy Conversion and Management, 90, 383-394. https://doi.org/10.1016/j.enconman.2014.11.029
Bhadoria, A., & Marwaha, S. (2020). Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system.
Journal of Computational Design and Engineering,
7(5), 668-683.
https://doi.org/10.1093/jcde/qwaa050
Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216. https://doi.org/10.1016/j.energy.2018.12.023
Deh Kiani, M. K., Ghobadian, B., Tavakoli, T., Nikbakht, A. M., & Najafi, G. (2010). Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends. Energy, 35(1), 65-69. https://doi.org/10.1016/j.energy.2009.08.034
Eiben, A. E., & Schippers, C. A. (1998). On evolutionary exploration and exploitation. Fundamenta Informaticae, 35(1-4), 35-50. https://doi.org/10.3233/FI-1998-35123403
Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.https://doi.org/10.1016/j.future.2019.02.028
Ileri, E., Karaoglan, A. D., & Akpinar, S. (2020). Optimizing cetane improver concentration in biodiesel-diesel blend via grey wolf optimizer algorithm. Fuel, 273, 117784. https://doi.org/10.1016/j.fuel.2020.117784
Ileri, E., Karaoglan, A. D., & Atmanli, A. (2013). Response surface methodology based prediction of engine performance and exhaust emissions of a diesel engine fuelled with canola oil methyl ester. Journal of Renewable and Sustainable Energy, 5(3), 033132. https://doi.org/10.1063/1.4811801
Karaoglan, A. D. (2021). Optimizing Plastic Extrusion Process via Grey Wolf Optimizer Algorithm and Regression Analysis. Journal of Scientific and Industrial Research, 80(01), 34-41.
Karaoglan, A. D., & Baydeniz, B. (2021). Optimizing Plastic Injection Process Using Whale Optimization Algorithm in Automotive Lighting Parts Manufacturing. Journal of Scientific and Industrial Research , 80(04), 360-368.
Kocakulak, T., Babagiray, M., Nacak, Ç., Safieddin Ardebili, S. M., Calam, A., & Solmaz, H. (2022). Multi objective ptimization of HCCI combustion fuelled with fusel oil and n-heptane blends.
Renewable Energy,
182, 827-841.
https://doi.org/https://doi.org/10.1016/j.renene.2021.10.041
Kocakulak, T., Halis, S., Ardebili, S. M. S., Babagiray, M., Haşimoğlu, C., Rabeti, M., & Calam, A. (2023). Predictive modelling and optimization of performance and emissions of an auto-ignited heavy naphtha/n-heptane fueled HCCI engine using RSM. Fuel, 333, 126519.https://doi.org/https://doi.org/10.1016/j.fuel.2022.126519
Leo, G. M. L., Sekar, S., & Arivazhagan, S. (2020). Experimental investigation and ANN modelling of the effects of diesel/gasoline premixing in a waste cooking oil-fuelled HCCI-DI engine.
Journal of Thermal Analysis and Calorimetry,
141(6), 2311-2324.
https://doi.org/10.1007/s10973-020-09418-z
Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133. https://doi.org/10.1016/j.knosys.2015.12.022
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Moghdani, R., & Salimifard, K. (2018). Volleyball premier league algorithm. Applied Soft Computing, 64, 161-185. https://doi.org/10.1016/j.asoc.2017.11.043
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Naik, A., Satapathy, S. C., & Abraham, A. (2020). Modified Social Group Optimization—a meta-heuristic algorithm to solve short-term hydrothermal scheduling. Applied Soft Computing, 95, 106524. https://doi.org/10.1016/j.asoc.2020.106524
Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2017). A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Applied Soft Computing, 59, 596-621. https://doi.org/10.1016/j.asoc.2017.06.033
Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2020). A novel meta-heuristic optimization method based on golden ratio in nature. Soft Computing, 24(2), 1117-1151. https://doi.org/10.1007/s00500-019-03949-w
Parsa, S., & Neshat, E. (2022). Thermodynamic and statistical analysis on the effect of exhaust gas recirculation on waste heat recovery from homogeneous charge compression ignition engines.
Journal of Thermal Analysis and Calorimetry,
147(11), 6349-6361.
https://doi.org/10.1007/s10973-021-10923-y
Rao, R. V., & Keesari, H. S. (2020). A self-adaptive population Rao algorithm for optimization of selected bio-energy systems.
Journal of Computational Design and Engineering,
8(1), 69-96.
https://doi.org/10.1093/jcde/qwaa063
Roushangar, K., & Shahnazi, S. (2019). Bed load prediction in gravel-bed rivers using wavelet kernel extreme learning machine and meta-heuristic methods.
International Journal of Environmental Science and Technology,
16(12), 8197-8208.
https://doi.org/10.1007/s13762-019-02287-6
Satapathy, S., & Naik, A. (2016). Social group optimization (SGO): a new population evolutionary optimization technique. Complex & Intelligent Systems, 2(3), 173-203. https://doi.org/10.1007/s40747-016-0022-8
Shareef, H., Ibrahim, A. A., & Mutlag, A. H. (2015). Lightning search algorithm. Applied Soft Computing, 36, 315-333. https://doi.org/10.1016/j.asoc.2015.07.028
Tejani, G. G., Savsani, V. J., Patel, V. K., & Mirjalili, S. (2018). An improved heat transfer search algorithm for unconstrained optimization problems.
Journal of Computational Design and Engineering,
6(1), 13-32.
https://doi.org/10.1016/j.jcde.2018.04.003
Yazdani, M., & Jolai, F. (2015). Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm.
Journal of Computational Design and Engineering,
3(1), 24-36.
https://doi.org/10.1016/j.jcde.2015.06.003
Yilmaz, N., Ileri, E., Atmanlı, A., Deniz Karaoglan, A., Okkan, U., & Sureyya Kocak, M. (2016). Predicting the engine performance and exhaust emissions of a diesel engine fueled with hazelnut oil methyl ester: the performance comparison of response surface methodology and LSSVM. Journal of Energy Resources Technology, 138(5), 052206. https://doi.org/10.1115/1.4032941
Zhao, W., Wang, L., & Zhang, Z. (2019). A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Generation Computer Systems, 91, 601-610. https://doi.org/10.1016/j.future.2018.05.037